Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Active galactic nuclei (AGN) are the signposts of black hole growth, and likely play an important role in galaxy evolution. An outstanding question is whether AGN of different spectral types indicate different evolutionary stages in the coevolution of black holes and galaxies. We present the angular correlation function between an AGN sample selected from Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) optical photometry and Wide-field Infrared Survey Explorer mid-IR photometry and a luminous red galaxy (LRG) sample from HSC-SSP. We investigate AGN clustering strength as a function of luminosity and spectral features across three independent HSC fields totaling ∼600 deg2, forz∈ 0.6 −1.2 and AGN withL6μm> 3 × 1044erg s−1. There are ∼28,500 AGN and ∼1.5 million LRGs in our primary analysis. We determine the average halo mass for the full AGN sample (Mh≈ 1012.9h−1M⊙), and note that it does not evolve significantly as a function of redshift (over this narrow range) or luminosity. We find that, on average, unobscured AGN (Mh≈ 1013.3h−1M⊙) occupy ∼4.5× more massive halos than obscured AGN (Mh≈ 1012.6h−1M⊙), at 5σstatistical significance using 1D uncertainties, and at 3σusing the full covariance matrix, suggesting a physical difference between unobscured and obscured AGN, beyond the line-of-sight viewing angle. Furthermore, we find evidence for a halo mass dependence on reddening level within the Type I AGN population, which could support the existence of a dust-obscured phase. However, we also find that quite small systematic shifts in the redshift distributions of the AGN sample could explain current and previously observed differences inMh.more » « less
-
Abstract Intermediate-mass black holes (IMBHs) are believed to be the missing link between the supermassive black holes (BHs) found at the centers of massive galaxies and BHs formed through stellar core collapse. One of the proposed mechanisms for their formation is a collisional runaway process in high-density young star clusters, where an unusually massive object forms through repeated stellar collisions and mergers, eventually collapsing to form an IMBH. This seed IMBH could then grow further through binary mergers with other stellar-mass BHs. Here we investigate the gravitational-wave (GW) signals produced during these later IMBH–BH mergers. We use a state-of-the-art semi-analytic approach to study the stellar dynamics and to characterize the rates and properties of IMBH–BH mergers. We also study the prospects for detection of these mergers by current and future GW observatories, both space-based (LISA) and ground-based (LIGO Voyager, Einstein Telescope, and Cosmic Explorer). We find that most of the merger signals could be detected, with some of them being multiband sources. Therefore, GWs represent a unique tool to test the collisional runaway scenario and to constrain the population of dynamically assembled IMBHs.more » « less
-
Abstract The Makani galaxy hosts the poster child of a galactic wind on scales of the circumgalactic medium. It consists of a two-episode wind in which the slow, outer wind originated 400 Myr ago (Episode I;RI= 20 − 50 kpc) and the fast, inner wind is 7 Myr old (Episode II;RII= 0 − 20 kpc). While this wind contains ionized, neutral, and molecular gas, the physical state and mass of the most extended phase—the warm, ionized gas—are unknown. Here we present Keck optical spectra of the Makani outflow. These allow us to detect hydrogen lines out tor= 30–40 kpc and thus constrain the mass, momentum, and energy in the wind. Many collisionally excited lines are detected throughout the wind, and their line ratios are consistent with 200–400 km s−1shocks that power the ionized gas, withvshock=σwind. Combining shock models, density-sensitive line ratios, and mass and velocity measurements, we estimate that the ionized mass and outflow rate in the Episode II wind could be as high as those of the molecular gas: and yr−1. The outer wind has slowed, so that yr−1, but it contains more ionized gas, M⊙. The momentum and energy in the recent Episode II wind imply a momentum-driven flow (p“boost” ∼7) driven by the hot ejecta and radiation pressure from the Eddington-limited, compact starburst. Much of the energy and momentum in the older Episode I wind may reside in a hotter phase, or lie further into the circumgalactic medium.more » « less
-
Abstract We present a measurement of the intrinsic space density of intermediate-redshift ( z ∼ 0.5), massive ( M * ∼ 10 11 M ⊙ ), compact ( R e ∼ 100 pc) starburst (Σ SFR ∼ 1000 M ⊙ yr −1 kpc −1 ) galaxies with tidal features indicative of them having undergone recent major mergers. A subset of them host kiloparsec-scale, > 1000 km s −1 outflows and have little indication of AGN activity, suggesting that extreme star formation can be a primary driver of large-scale feedback. The aim for this paper is to calculate their space density so we can place them in a better cosmological context. We do this by empirically modeling the stellar populations of massive, compact starburst galaxies. We determine the average timescale on which galaxies that have recently undergone an extreme nuclear starburst would be targeted and included in our spectroscopically selected sample. We find that massive, compact starburst galaxies targeted by our criteria would be selectable for ∼ 148 − 24 + 27 Myr and have an intrinsic space density n CS ∼ ( 1.1 − 0.3 + 0.5 ) × 10 − 6 Mpc − 3 . This space density is broadly consistent with our z ∼ 0.5 compact starbursts being the most extremely compact and star-forming low-redshift analogs of the compact star-forming galaxies in the early universe, as well as them being the progenitors to a fraction of intermediate-redshift, post-starburst, and compact quiescent galaxies.more » « less
-
Abstract We present results on the nature of extreme ejective feedback episodes and the physical conditions of a population of massive ( M * ∼ 10 11 M ⊙ ), compact starburst galaxies at z = 0.4–0.7. We use data from Keck/NIRSPEC, SDSS, Gemini/GMOS, MMT, and Magellan/MagE to measure rest-frame optical and near-IR spectra of 14 starburst galaxies with extremely high star formation rate surface densities (mean Σ SFR ∼ 2000 M ⊙ yr −1 kpc −2 ) and powerful galactic outflows (maximum speeds v 98 ∼ 1000–3000 km s −1 ). Our unique data set includes an ensemble of both emission ([O ii] λλ 3726,3729, H β , [O iii] λλ 4959,5007, H α , [N ii] λλ 6549,6585, and [S ii] λλ 6716,6731) and absorption (Mg ii λλ 2796,2803, and Fe ii λ 2586) lines that allow us to investigate the kinematics of the cool gas phase ( T ∼ 10 4 K) in the outflows. Employing a suite of line ratio diagnostic diagrams, we find that the central starbursts are characterized by high electron densities (median n e ∼ 530 cm −3 ), and high metallicity (solar or supersolar). We show that the outflows are most likely driven by stellar feedback emerging from the extreme central starburst, rather than by an AGN. We also present multiple intriguing observational signatures suggesting that these galaxies may have substantial Lyman continuum (LyC) photon leakage, including weak [S ii] nebular emission lines. Our results imply that these galaxies may be captured in a short-lived phase of extreme star formation and feedback where much of their gas is violently blown out by powerful outflows that open up channels for LyC photons to escape.more » « less
An official website of the United States government

Full Text Available